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The failure process of unidirectional BN-coated HI-NICALONTM SiC fiber reinforced glass
matrix composites was examined under tensile loading. In situ observation of the mean
matrix crack interval was conducted by the replica observation during tensile testing.
Axisymmetric cylindrical models extended to the system considering the strength
distribution of fibers were proposed to predict the whole stress-strain curve for comparison
with the experimental results. C© 1999 Kluwer Academic Publishers

1. Introduction
It is now well known that failure modes in continuous
fiber-reinforced ceramic matrix composites (CMC) in-
volve initial andmultiple matrix cracks, since the matrix
has a lower failure strain than fibers. Then, fiber/matrix
debondings occur from the tip of matrix cracks due to
weak fiber/matrix interfaces (Fig. 1), so that fibers can
bridge the crack and support further loads before the
final fracture. Therefore, the optimization of interfa-
cial design is necessary for the structural reliability of
CMC [1–3].

Many analyses have been proposed to characterize
the damage progress in CMC, considering the “weak”
interfaces [4, 5]. Hutchinson and Jensen [5] used ax-
isymmetric cylindrical models for stress analysis in
CMC and quantitatively showed the effects of the in-
terfacial debonding and sliding friction on the matrix
cracking. Marshall [6] examined the use of Hutchinson
and Jensen’s analysis to deduce interfacial properties
from experimental measurements of fiber sliding and
provided explicit relations for the relative displacement
as a function of increasing applied stress.

Most approaches for measuring mechanical prop-
erties of interfaces have used micro-model tests [7],
including pushing and pulling of fibers. In such micro-
model tests, it is difficult to reproduce the micro-
mechanical damage in real composites, which has a
wide variety of damage stages including matrix crack,
debonding and fiber failure. Then, to estimate the
micro-mechanical damage in real composites, the pre-
diction of the stress-strain curve is considered to be
attractive. This analysis can provide a quantitative es-
timation of not only the micro-mechanical damage but
also the mechanical properties of interfaces. Vagaggini
et al. [8] proposed a model for the prediction of the
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stress-strain curve for the composites with multiple ma-
trix cracks, using Hutchinson and Jensen’s analysis.

The interfacial properties also influence the dam-
age progress after matrix cracks are saturated [9, 10].
Curtin [10] proposed a model for the ultimate tensile
strength prediction considering both bridging and pull-
out forces of fibers, and showed that the theory had
a good agreement with experimental data. Since these
studies are based on the theory of the ideal single fiber
composites, the conditions of interfacial behavior (such
as debonding) for the composites are neglected. Thus
a new model should be constructed to connect interfa-
cial properties with the behavior of fibers. To this end,
more experimental supports are necessary to quantify
the micro-mechanical damage progress.

The objective of the present study is to experimen-
tally examine the tensile damage growth process in
unidirectional BN-coated HI-NICALONTM SiC fiber
reinforced glass matrix composites, and to compare
the experimental results with the theoretical predictions
based on a new model which considers matrix cracking,
debonding, and fiber strength distribution.

The remainder of this paper is structured as follows:
In Section 2 experimental procedures are described. In
Section 3 a new model is described for the prediction
of the stress-strain curve. In Section 4 experimental re-
sults are shown. In Section 5 comparison of theoretical
and experimental results are presented. And further dis-
cussion is conducted.

2. Experiments
HI-NICALONTM (Nippon Carbon Co. Ltd.) is an im-
proved high-temperature SiC fiber with low-oxygen
content. Two types of HI-NICALONTM fibers were
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Figure 1 Schematic of crack deflection.

used to fabricate unidirectional fiber reinforced borosil-
icate glass (PYREXTM) matrix composites: (1) fibers
without coating, and (2) fibers CVD-coated with 1µm-
thick BN. Prepregs were prepared by a glass slurry
method and hot-pressed at 1000◦C for 60 minutes, to
fabricate 100×100×2.5 mm plates.

Tensile test specimens with dimensions of 100×
3×2.5 mm were cut from the fabricated plates and
tapered GFRP tabs were glued at both sides to pro-
vide a gauge length of 30 mm. Tensile tests were per-
formed at a constant cross-head speed of 0.4 mm/min
at room temperature in air. A computer-assisted data
acquisition system was used to obtain the stress-strain
curves from a strain gage placed on the specimen and
a load cell. The specimen surfaces were polished with
fine diamond pastes. Loaded specimens were period-
ically stopped under tension to replicate the damage
progress on specimen surfaces using polyacetate films.
This technique provides thein situdamage monitoring
and the quantitative measurement of the matrix crack
spacing or density.

In-situ fiber strength is expected to decrease due to
degradation during the high-temperature fabrication.
So, the in-situ fiber strength data were obtained by
single fiber tension tests (gage length=25 mm) using
fibers extracted from fabricated plates. The fabricated
plates were dipped into acid solutions for 3 days to dis-
solve the glass matrix, washed in water, and then dried
in air to obtain extracted fibers.

3. Analysis
3.1. Axisymmetric cylindrical models with

two matrix cracks
The analysis of stress and strain distribution near a ma-
trix crack with fiber/matrix debonding is necessary to
establish a model for the damage initiation and growth
behavior with the interfacial properties. Hutchinson and
Jensen [5] proposed an axisymmetric cylindrical model
for a single matrix crack in an infinite body, using a
Lamé problem. In this paper, the analysis is extended for
a new model with two matrix cracks, which represents
a general model for multiple matrix cracks (Fig. 2).
Although the expression of Hutchinson and Jensen is
appropriate for stress and strain distribution near a ma-
trix crack, their analysis does not consider the fiber

Figure 2 Axisymmetric cylindrical cell model.

strength distribution. In order to consider fiber failure,
the present analysis is used under the condition that
the axial fiber stress is given byT at the matrix crack
plane.T is given as a function of the overall stressσ
(In Section 3.4). Marshall [6] modified the expression
given by Hutchinson and Jensen, usingT . In this paper,
Marshall’s expression is used to explain a model.

The present model forms a repeating unit of a uni-
directional composite with a fiber volume fraction
Vf = (Rf/Rm)2, and consists of debonded (lengthl from
both matrix cracks) and bonded regions. Here, the ma-
trix crack spacing isd, and the sliding stress isτ . Al-
though Hutchinson and Jensen give solutions for fibers
which are anisotropic, the present analysis assumes that
fibers are isotropic.

In the bonded region (denoted by a superscript (+)),
the stresses and strains are given by solving a Lam´e
problem as,

σ+f = a1VfT − a2Emε
T
z (1)

ε+f = a5(VfT/Em)+ a6ε
T
z (2)

σ+m = (Em/Ec)VfT + Vf

1− Vf
a2Emε

T
z (3)

εT
z =

∫ 1T

0
(αf − αm) dt (4)

whereεT
z is a residual strain due to the thermal ex-

pansion mismatch between a fiber and matrix,a1–a6
are non-dimensional parameters given by Hutchinson
and Jensen [5], and shown in Table I. The subscripts
f, m, and c denote fibers, matrix and composites, re-
spectively.E andα are Young’s modulus and thermal
expansion coefficient, respectively.1T is a difference
in tested and fabricated temperatures.

In the debonded region, the differences in stresses
and strains relative to those in the bonded region (i.e.
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TABLE I Summary of constants

a1 = Ef

Ec
b1 = {(1− ν

2)E∗ + (1− ν)2Em − (1+ ν)[2(1− ν)2Ef + (1− 2ν)(1− ν + Vf (1+ ν))(Em − Ef )]}
2ν(1− ν)[(1+ ν)E∗ + (1− ν)Em]

a2 = (1− Vf )(1+ ν + (1+ ν)(Ef/Ec))

(1+ ν)(Ef + (1− 2ν)Ec)
b2 = (1+ ν)Em{2(1− ν)2Ef + (1− 2ν)[1− ν + Vf (1+ ν)](Em − Ef )}

(1− ν)Ef [(1+ ν)E∗ + (1− ν)Em]

a3 = 0 b3 = Vf (1+ ν){(1− Vf )(1+ ν)(1− 2ν)(Ef − Em)+ 2(1− ν)2Em}
(1− ν)(1− Vf )[(1+ ν)E∗ + (1− ν)Em]

a4 = (1− Vf )(1+ ν)Ef

(1+ ν)(Ef + (1− 2ν)Ec)
c1 = (1− Vfa1)(b2 + b3)1/2

2Vf

a5 = Em

Ec
c2 = a2(b2 + b3)1/2

2

a5 = Vf
Ef

Ec
c3 = Ec

Em

Ec = Vf Ef + (1− Vf )Em

E∗ = (1− Vf )Ef + Vf Em

1σf = σf − σ+f ,1εf = εf − ε+f ,) are also given by
solving a Lamé problem.

1σm = − Vf

1− Vf
1σf (5)

1εf = b21σf/Em (6)

1εm = −b31σf/Em (7)

whereb1–b3 (Table I) are also non-dimensional pa-
rameters (Type 2 condition) given by Hutchinson and
Jensen [5]. Their analysis provides two boundary con-
ditions. Marshall [6] discussed how these parameters
alter by change of mechanical properties and reported
the difference of these conditions. The Type 1 condi-

Figure 3 Axial fiber stress distribution.

tion is appropriate for a single fiber in matrix, such as
pull-out or push-out experiments. The Type 2 condi-
tion is appropriate for composites where all the fibers
are bridging a matrix crack. Therefore, the present anal-
ysis is used only for the Type 2 condition. If, for sim-
plicity, the constant sliding stressτ is assumed to act
on all debonded surfaces, the axial fiber stress in the
debonded region is given by solving a shear-lag prob-
lem with Equation 8

σf = T − 2τ
l − z

Rf
(8)

This stress distribution, as well as Hutchinson and
Jensen’s one, has a large gapγ at a debonding crack tip
(Fig. 3). This gap can be written in terms of the Mode II
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interfacial fracture toughnessgic and non-dimensional
parametersc1 andc3 (Table I).

γ = 1

c1c3

1− Vf

Vf

√
Emgic

Rf
(9)

3.2. Average matrix crack spacing
As the applied stress increases, more matrix cracks are
generated between existing cracks, which are called
multiple matrix cracks. Debonding always occurs at
the tip of matrix cracks in CMC, when matrix cracks
are generated in the composites. The length of debond-
ing also increases as the applied stress increases [11].
As the neighboring debondings are connected, ma-
trix cracks tend to be saturated. Therefore, the ma-
trix crack interval depends on the debonding length.
Curtin [10] proposed an exact theory for them with the
sliding length, which is equal to the debonding length
(gic=0 N m−1). However, the theory requires a very
complicated numerical approach which considers the
distribution of the matrix crack interval. The present
analysis, for simplicity, uses the Weibull expression for
matrix cracks. Similar to Curtin’s approach, this model
assumes that matrix cracks are generated in bonded
regions.

If each matrix crack is assumed to have a gauge length
as long as the final matrix crack spacingds (shown in
Fig. 4), the probability of failure for matrix cracks in
the composites is given by

Pf = 1− exp

{
−
(
σ+m − σmu

σm0

)m̄
}

(10)

whereσm0 is a scale parameter,̄m is a Weibull mod-
ulus andσmu is the stress level as the first matrix

Figure 4 Matrix crack evolution.

crack occurs. The average matrix spacingd is given by
usingds.

d = L(
L
ds
− 1

)
Pf

∼= ds

Pf
(11)

Here for low density (σ
+
m − σmu

σm0
¿1), Equation 11 can be

converted to Equation 12

d = ds

(
Ecσm0

EmVf (T − Tmu)

)m̄

(12)

whereTmu is the axial fiber stress at the matrix crack
plane when the first matrix crack occurs. Then, Equa-
tion 12 is the almost same expression as given by
Vagagginiet al. [8] at m̄=1.

3.3. Debonding length
The stress and strain distribution depends on the de-
bonding length. Considering both sliding stress and
Mode II fracture toughness, the debonding lengthl is
given by

l

Rf
= 1− Vf

Vf
(VfT − σi )/2c3τ (13)

whereσi is a function ofgic, given by Hutchinson and
Jensen [5]. Afterl attains a half of the final matrix crack
spacing (ds/2), l is, for simplicity, assumed to be equal
to (ds/2).

3.4. Axial fiber stress at the matrix
crack plane

After matrix cracks are saturated, only fibers can
carry most of the applied stress in the composites.
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The mechanical behavior, then, depends on the fiber
strength. Curtin [10] discussed how the fiber stress is
related with both the fiber strength distribution and the
sliding stress. In the present model, the fiber stressT at
the matrix crack plane is assumed to be that given by
the Curtin model [10].

The Curtin model assumes that the force equilibrium
equation at the matrix crack plane is given by

σ

Vf
= (1− Pf (2l f, T))T + 2τ

Rf
〈L〉Pf (2l f, T) (14)

wherel f (= RfT/2τ ) is the effective pullout length,〈L〉
the average pullout length, andPf (2l f ,T) the cumulative
probability of fibers broken within the effective pullout
length when the bridging fiber stress isT . Then,σ is
given by

σ

Vf
= T

{
1− 1

2

(
T

σc

)m+1
}

(15)

wherem is a Weibull modulus obtained in single fiber
tension tests, andσc is a representative strength at the
gage length of 2l f . Then, calculating the maximum
value ofT , the composite ultimate tensile strengthσUTS
is given by

σUTS = Vf σc

(
2

m+ 2

)1/(m+1)(m+ 1

m+ 2

)
(16)

3.5. Average strain
If all matrix crack spacings are assumed to be equal, the
strain between two matrix cracks are equal to the aver-
age strain in the composite. Considering both bonded
and debonded regions, the average strainε in the com-
posite is given by

ε = ε+f + 2

(∫ l

0
1εf dz

)/
d (17)

4. Experimental results
4.1. Composite tensile tests
The stress-strain curves for two types of composites
are shown in Fig. 5. Composites with uncoated fibers
are very brittle without debonding at the tips of ma-
trix cracks and exhibit a linear stress-strain curve up to
the final fracture. Composites with BN-coated fibers,
on the other hand, show a linear stress-strain curve up
to about 200 MPa and becomes quite nonlinear. The
composite ultimate strength and strain are much higher
for composites with BN-coated fibers than those with
uncoated fibers. The weak interface as introduced by
BN coating is necessary for the improvement of the
composite strength properties.

4.2. Matrix cracking behavior
The densities of the matrix cracks measured through
the replica observation are plotted in Fig. 6 along with

Figure 5 Stress-strain curves for composites reinforced with BN-coated
and uncoated fibers.

Figure 6 Experimental results of stress-strain curves and crack density.

Figure 7 Photographs of matrix cracks.

the corresponding stress-strain curve for composites
with BN-coated fibers. The observed matrix cracks are
shown in Fig. 7. An initial matrix crack was observed at
192 MPa, which is close to the knee point where non-
linearity appears in the stress-strain curve. The density
of matrix cracks kept increasing as the applied stress in-
creased, and was saturated at about 270–300 MPa. The
average crack spacing at the saturation was approxi-
mately 157µm.
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TABLE I I M echanical properties of extracted HI-NICALON SiC
fibers

Fiber statistical properties Values

Mean strength 2.4 GPa
Minimum strength 1.6 GPa
Maximum strength 3.4 GPa
Shape parameter,m 4.0
Scale parameter,σ0 2.7 GPa

Figure 8 Strength distribution of extracted HI-NICALON SiC fibers.

4.3. Fiber strength tests
The fiber strength distributions of extrated fibers from
the composites are shown in Fig. 8. The strength prop-
erties and the Weibull modulus are listed in Table II.
The mean strength of virgin HI-NICALONTM is al-
most 2.8 MPa, which is higher than that of the extrated
fibers. No clear fracture mirrors were not observed on
fracture surfaces of pull-out HI-NICALON fibers.

5. Discussion
5.1. Probabilistic prediction of average

matrix crack density
The average matrix crack density predicted by Equa-
tion 11 is shown in Fig. 9. The mechanical data of the
composites used for the prediction are listed in Table III.
Here the scale parameter and the Weibull modulus of
the matrix (σm0=44 MPa,m̄=1.34) were obtained
from the replica observation results using Equation 10.
However, since these data are calculated from the ex-
perimental data, it should be noted that they may not
be the intrinsic fracture strength of matrix itself. The
prediction agrees well with the experimental data. The
model proposed by Vagagganiet al.[8] does not exactly
fit the experimental data due to the assumption that no
matrix cracks are generated after a certain saturation
point. In fact, a few cracks are generated after they tend
to be saturated.

5.2. Determination of interfacial properties
The debonding lengthl predicted by Equation 13 with
changinggic is shown in Fig. 10. Here the interfacial

TABLE I I I Mechanical properties of consituent materials

Material properties Values

Fiber modulus with BN coating,Ef 230 GPa
Matrix modulus,Em 60 GPa
Fiber volume fraction,Vf 0.31
Fiber radius,Rf 8 µm
Poisson’s ratio,νf = νm 0.2
Fiber thermal expansion coefficient,αf 3.10×10−6

Matrix thermal expansion coefficient,αm 3.25×10−6

Temperature change,1T −1000◦C

Figure 9 Comparison between predicted and experimental crack densi-
ties.

Figure 10 Predicted debonding length with changinggic (τ =7.6 MPa).

sliding stressτ can be estimated by the multiple fracture
method [10, 12] using the average matrix crack spacing
at saturationds and given by

τ = 1.34

{
0mR2

f EmEfV2
m

EcVf d3
s

}1/2

(18)

where0m is the fracture energy of matrix. The calcu-
latedτ value for composites with BN-coated fibers is
7.6 MPa. The shaded region in Fig. 10 corresponds to
the range in a half of the saturated matrix crack spac-
ing. The Hutchinson and Jensen model does not have
any stress recovery region of the matrix in the bonding
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Figure 11 Axial fiber stress at the matrix crack plane.

region. Therefore, if we assume the matrix crack sat-
uration occurs when the neighboring debondings con-
nect with each other, matrix cracks are saturated when
debonding length reaches the shaded region. Since ma-
trix cracks are saturated at about 270–300 MPa, the
appropriate value forgic is found to be approximately
0.8 N m−1.

5.3. Fiber stress at a matrix crack plane
The fiber stressT calculated from the applied stressσ
by Equation 15 is shown in Fig. 11. If no fiber breaks oc-
cur,T is equal toσ/Vf , which is also shown in Fig. 11.
The arrow in Fig. 11 denotes the stress where matrix
cracks are saturated (270–300 MPa). The difference
of two curves is very small until 600 MPa, but be-
comes gradually larger as the applied stress increase,
because some fibers begin to break. The Curtin model
has been developed only in the strain range after the
matrix cracks are saturated. However, the Curtin model
can be appropriately used in the stress range where only
a few fibers break.

5.4. Prediction of stress-strain curves
The predicted stress-strain curve is shown in Fig. 12.
Here, to compare with experimental strain obtained
from strain gauge, effective strainεeff was used and
is given by

εeff = ε − a6ε
T
z (19)

This analysis used the strength data of fibers extract-
ed from the composites as shown in Table II, andτ =
7.6 MPa. Predicted and experimental stress-strain
curves are similar until 400 MPa. HoweverσUTS pre-
dicted by the Curtin model normally provides the
ideal composite ultimate tensile strength, which is
larger than the experimentally-obtained tensile strength
(512 MPa).

This is because the strength data of extracted fibers
exceed those in real composites. Although the ex-
perimental strength data of fibers (NICALON) [13]
(σ0=1.8 MPa) used by Curtin is much lower than

Figure 12 Comparison between predicted and experimental stress-
strain curves.

our experimental data (shown in Table I), the compos-
ite with those weaker fibers has almost the same ulti-
mate tensile strength as our experimental results. Us-
ing the strength data of fibers (σc=2.4 MPa) calculated
from experimentalσUTS(512 MPa), the modified stress-
strain curve is also shown in Fig. 12. This results are
similar to experimental results. Thus, the strength data
of fibers in real composites are found to be very impor-
tant factor to predict the stress-strain curve and ultimate
tensile strength. Further investigation is necessary to es-
tablish the way how the strength of HI-NICALONTM

are estimated.
Fracture surfaces observed with SEM after the ten-

sile failure are shown in Fig. 13. Fiber pull-outs can
be found in fiber-rich regions more frequently than in
matrix-rich regions. It is considered that an initial ma-
trix crack generated in a matrix-rich region tends to
propagate in a brittle manner and decreases the com-
posite tensile strength. The composite ultimate tensile
strength can be increased by the reduction in local scat-
ter of fiber spacial distribution in the cross-section as
well as by improvement of the specimen configuration.

The stress-strain curve predicted for SiC
(NICALON)/CAS [14] is shown in Fig. 14. The mecha-
nical data of the composites are listed in Table IV.
It should be noted that the strength data of fibers is
obtained from another paper [15]. They observed the
fracture mirror of the broken fibers and obtainedin situ
fiber strength parametersσc=2.0 MPa andm=2. The
prediction has a good agreement with the experimental
results.

TABLE IV M echanical properties of CAS/NICALON composites

Material properties Values

Fiber modulus with BN coating,Ef 195 GPa
Matrix modulus,Em 98 GPa
Fiber volume fraction,Vf 0.35
Fiber radius,Rf 7.5 µm
Poisson’s ratio,νf = νm 0.2
Fiber thermal expansion coefficient,αf 4.0×10−6

Matrix thermal expansion coefficient,αm 5.0×10−6

Temperature change,1T −1000◦C
Sliding stress,τ 12 MPa
Interface toughness,gic 2.5 N m−1
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Figure 13 Photographs of fracture surfaces.

Figure 14 Comparison between predicted and experimental stress-
strain curves (CAS/NICALON).

The present model is applicable to the other materials
which have the same damage process. In addition, when
the experimental stress-strain curve is obtained, the
present model is useful for obtaining micro-mechanical
properties and optimazing the material design.

6. Conclusions
The tensile damage initiation and growth behavior in
BN-coated HI-NICALON SiC fiber reinforced glass
matrix composites was experimentally clarified by rep-
lica observations. The improved axisymmetric cylindri-
cal model was used to predict the stress-strain behavior,
and the following conclusions were obtained: The im-
proved axisymmetric cylindrical models with two ma-
trix cracks predicted the stress-strain curve reasonably
well. The prediction of ultimate tensile strength con-
sidering the fiber strength distribution of the extracted
fibers provided a larger value than the experimental
data, but the difference is expected to be decreased by

establishing the way to exactly measure the strength
data of fibers in real composites (such as single fiber
composite tests), reducing in local scatter of fiber spa-
cial distribution in the cross-section and improvement
of the specimen configuration.

Acknowledgement
We thank Professor Curtin for his useful advice con-
cerning the theoretical analysis especially on the ulti-
mate tensile strength, and Mr. M. Yanaka and Miss A.
Nakai for fruitful discussions.

References
1. K . M . P R E W O andJ. J. B R E N N A N, J. Mater. Sci.15 (1980)

463–468.
2. D. B. M A R S H A L L andA . G. E V A N S, J. Amer. Ceram. Soc.

68 (1985) 225–231.
3. D. C. C R A N M E R, Amer. Ceram. Soc. Bull.68 (1989) 415–419.
4. L . S. S I G L andA . G. E V A N S, Mech. Mater.8 (1989) 1–12.
5. J. W. H U T C H I N S O N and H. M . J E N S E N, ibid. 9 (1990)

139–163.
6. D. B. M A R S H A L L , Acta Metall. Mater.40 (1992) 427–441.
7. D. B. M A R S H A L L andW. C. O L I V E R, J. Amer. Ceram. Soc.

70 (1987) 542–548.
8. E. V A G A G G I N I , J. M . D O M E R G U E andA . G. E V A N S,

ibid. 78 (1995) 745–755.
9. H. C A O andM . D. T H O U L E S S, ibid. 73 (1990) 2091–2094.

10. W. A . C U R T I N, ibid. 74 (1991) 2837–2845.
11. N. T A K E D A andM . K I R I Y A M A , Composites Part A30(1999)

593.
12. J. A V E S T O N,G. A . C O O P E RandA . K E L L Y , The Properties

of Fiber Composites, Conf. Proc. Nat. Phys. Lab., Guildford (IPC
Sci. Tech., Teddington, UK, 1971) pp. 15–26.

13. K . P R E W O, J. Mater. Sci.21 (1980) 463–468.
14. P. K A R A N D I K A R andT. W. C H O U, Comp. Sci. Technol.74

(1993) 2837–2845.
15. D. S. B E Y E R L E, S. M . S P E A R I N G, F. W. Z O K andA .

G. E V A N S, J. Amer. Ceram. Soc.75 (1992) 2719–2725.

Received 24 August 1998
and accepted 13 January 1999

3412


